Relative errors versus residuals of approximate solutions of weighted least squares problems in Hilbert space

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust solutions to uncertain weighted least squares problems ∗

Robust optimization is a rapidly developing methodology for handling optimization problems affected by non-stochastic uncertain-but-bounded data perturbations. In this paper, we consider the weighted least squares problems where the coefficient matrices and vector belong to different uncertain bounded sets. We introduce the robust counterparts of these problems and reformulate them as the tract...

متن کامل

Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space

A family of regularized least squares regression models in a Reproducing Kernel Hilbert Space is extended by the kernel partial least squares (PLS) regression model. Similar to principal components regression (PCR), PLS is a method based on the projection of input (explanatory) variables to the latent variables (components). However, in contrast to PCR, PLS creates the components by modeling th...

متن کامل

Spectral compression: Weighted principal component analysis versus weighted least squares

Two weighted compression schemes, Weighted Least Squares (wLS) and Weighted Principal Component Analysis (wPCA), are compared by considering their performance in minimizing both spectral and colorimetric errors of reconstructed reflectance spectra. A comparison is also made among seven different weighting functions incorporated into ordinary PCA/LS to give selectively more importance to the wav...

متن کامل

Approximate Simulation-Based Solution of Large-Scale Least Squares Problems

We consider linear least squares problems of very large dimension, such as those arising for example in inverse problems. We introduce an associated approximate problem, within a subspace spanned by a relatively small number of basis functions, and solution methods that use simulation, importance sampling, and low-dimensional calculations. The main components of this methodology are a regressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2002

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(02)00158-x